Python2 菜鸟笔记

以下划线开头的标识符是有特殊意义的。以单下划线开头 _foo 的代表不能直接访问的类属性,需通过类提供的接口进行访问,不能用 from xxx import * 而导入;

以双下划线开头的 __foo 代表类的私有成员;以双下划线开头和结尾的 __foo__ 代表 Python 里特殊方法专用的标识,如 __init__() 代表类的构造函数。

行和缩进

学习 Python 与其他语言最大的区别就是,Python 的代码块不使用大括号 {} 来控制类,函数以及其他逻辑判断。python 最具特色的就是用缩进来写模块。

缩进的空白数量是可变的,但是所有代码块语句必须包含相同的缩进空白数量,这个必须严格执行。

IndentationError: unindent does not match any outer indentation level错误表明,你使用的缩进方式不一致,有的是 tab 键缩进,有的是空格缩进,改为一致即可。

如果是 IndentationError: unexpected indent 错误, 则 python 编译器是在告诉你"Hi,老兄,你的文件里格式不对了,可能是tab和空格没对齐的问题",所有 python 对格式要求非常严格。

因此,在 Python 的代码块中必须使用相同数目的行首缩进空格数。

建议你在每个缩进层次使用 单个制表符 或 两个空格 或 四个空格 , 切记不能混用

多行语句

Python语句中一般以新行作为为语句的结束符。

但是我们可以使用斜杠( \)将一行的语句分为多行显示,如下所示:

语句中包含 [], {} 或 () 括号就不需要使用多行连接符。如下实例:

Python注释

python中单行注释采用 # 开头。

python 中多行注释使用三个单引号(''')或三个双引号(""")。

Print 输出

print 默认输出是换行的,如果要实现不换行需要在变量末尾加上逗号 ,

 

#!/usr/bin/python : 是告诉操作系统执行这个脚本的时候,调用 /usr/bin 下的 python 解释器;

#!/usr/bin/env python(推荐): 这种用法是为了防止操作系统用户没有将 python 装在默认的 /usr/bin 路径里。当系统看到这一行的时候,首先会到 env 设置里查找 python 的安装路径,再调用对应路径下的解释器程序完成操作。

#!/usr/bin/python 相当于写死了python路径;

#!/usr/bin/env python 会去环境设置寻找 python 目录,推荐这种写法

 

标准数据类型

 

Python有五个标准的数据类型:

  • Numbers(数字)
  • String(字符串)
  • List(列表)
  • Tuple(元组)
  • Dictionary(字典)

Python支持四种不同的数字类型:

  • int(有符号整型)
  • long(长整型[也可以代表八进制和十六进制])
  • float(浮点型)
  • complex(复数)

复数由实数部分和虚数部分构成,可以用 a + bj,或者 complex(a,b) 表示, 复数的实部 a 和虚部 b 都是浮点型。

Python字符串

字符串或串(String)是由数字、字母、下划线组成的一串字符。

一般记为 :

s="a1a2···an"(n>=0)

它是编程语言中表示文本的数据类型。

python的字串列表有2种取值顺序:

  • 从左到右索引默认0开始的,最大范围是字符串长度少1
  • 从右到左索引默认-1开始的,最大范围是字符串开头

如果你要实现从字符串中获取一段子字符串的话,可以使用变量 [头下标:尾下标],就可以截取相应的字符串,其中下标是从 0 开始算起,可以是正数或负数,下标可以为空表示取到头或尾。

比如:

s = 'ilovepython'

s[1:5]的结果是love。

当使用以冒号分隔的字符串,python返回一个新的对象,结果包含了以这对偏移标识的连续的内容,左边的开始是包含了下边界。

上面的结果包含了s[1]的值l,而取到的最大范围不包括上边界,就是s[5]的值p

 

加号(+)是字符串连接运算符,星号(*)是重复操作

Python列表

List(列表) 是 Python 中使用最频繁的数据类型。

列表可以完成大多数集合类的数据结构实现。它支持字符,数字,字符串甚至可以包含列表(即嵌套)。

列表用 [ ] 标识,是 python 最通用的复合数据类型。

列表中值的切割也可以用到变量 [头下标:尾下标] ,就可以截取相应的列表,从左到右索引默认 0 开始,从右到左索引默认 -1 开始,下标可以为空表示取到头或尾。

加号 + 是列表连接运算符,星号 * 是重复操作。

Python元组

元组是另一个数据类型,类似于List(列表)。

元组用"()"标识。内部元素用逗号隔开。但是元组不能二次赋值,相当于只读列表

Python 字典

字典(dictionary)是除列表以外python之中最灵活的内置数据结构类型。列表是有序的对象集合,字典是无序的对象集合

两者之间的区别在于:字典当中的元素是通过键来存取的,而不是通过偏移存取。

字典用"{ }"标识。字典由索引(key)和它对应的值value组成。

Python算术运算符

** 幂 - 返回x的y次幂
% 取模 - 返回除法的余数
// 取整除 - 返回商的整数部分
!= 不等于 - 比较两个对象是否不相等 (a != b) 返回 true.
<> 不等于 - 比较两个对象是否不相等 (a <> b) 返回 true。这个运算符类似 != 。

Python成员运算符

除了以上的一些运算符之外,Python还支持成员运算符,测试实例中包含了一系列的成员,包括字符串,列表或元组。

运算符 描述 实例
in 如果在指定的序列中找到值返回 True,否则返回 False。 x 在 y 序列中 , 如果 x 在 y 序列中返回 True。
not in 如果在指定的序列中没有找到值返回 True,否则返回 False。 x 不在 y 序列中 , 如果 x 不在 y 序列中返回 True。

 

这里 is 和 == 类似编译原理中传值与传地址。又或者说是 is 只是传递的指针,判断是否指向同一个地址块,这样 is 两边的参数指向内存中同个地址块,毕竟我家电视跟你电视不是同一个东西。而 == 则是仅仅判断值相同

Python 条件语句

由于 python 并不支持 switch 语句,所以多个条件判断,只能用 elif 来实现,如果判断需要多个条件需同时判断时,可以使用 or (或),表示两个条件有一个成立时判断条件成功;使用 and (与)时,表示只有两个条件同时成立的情况下,判断条件才成功。

 

Python pass 语句

Python pass是空语句,是为了保持程序结构的完整性。

pass 不做任何事情,一般用做占位语句。

Python 语言 pass 语句语法格式如下:

实例:

以上实例执行结果:

Python三引号(triple quotes)

python中三引号可以将复杂的字符串进行复制:

python三引号允许一个字符串跨多行,字符串中可以包含换行符、制表符以及其他特殊字符。

三引号的语法是一对连续的单引号或者双引号(通常都是成对的用)。

三引号让程序员从引号和特殊字符串的泥潭里面解脱出来,自始至终保持一小块字符串的格式是所谓的WYSIWYG(所见即所得)格式的。

Python 函数

定义一个函数

你可以定义一个由自己想要功能的函数,以下是简单的规则:

  • 函数代码块以 def 关键词开头,后接函数标识符名称和圆括号()
  • 任何传入参数和自变量必须放在圆括号中间。圆括号之间可以用于定义参数。
  • 函数的第一行语句可以选择性地使用文档字符串—用于存放函数说明。
  • 函数内容以冒号起始,并且缩进。
  • return [表达式] 结束函数,选择性地返回一个值给调用方。不带表达式的return相当于返回 None。

语法

默认情况下,参数值和参数名称是按函数声明中定义的的顺序匹配起来的。

函数调用

定义一个函数只给了函数一个名称,指定了函数里包含的参数,和代码块结构。

这个函数的基本结构完成以后,你可以通过另一个函数调用执行,也可以直接从Python提示符执行。

如下实例调用了printme()函数:

 

Python 模块

Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句。

模块让你能够有逻辑地组织你的 Python 代码段。

把相关的代码分配到一个模块里能让你的代码更好用,更易懂。

模块能定义函数,类和变量,模块里也能包含可执行的代码。

例子

下例是个简单的模块 support.py:

support.py 模块:

import 语句

模块的引入

模块定义好后,我们可以使用 import 语句来引入模块,语法如下:

比如要引用模块 math,就可以在文件最开始的地方用 import math 来引入。在调用 math 模块中的函数时,必须这样引用:

当解释器遇到 import 语句,如果模块在当前的搜索路径就会被导入。

搜索路径是一个解释器会先进行搜索的所有目录的列表。如想要导入模块 support.py,需要把命令放在脚本的顶端:

test.py 文件代码:

From…import 语句

Python 的 from 语句让你从模块中导入一个指定的部分到当前命名空间中。语法如下:

例如,要导入模块 fib 的 fibonacci 函数,使用如下语句:

这个声明不会把整个 fib 模块导入到当前的命名空间中,它只会将 fib 里的 fibonacci 单个引入到执行这个声明的模块的全局符号表。

From…import* 语句

把一个模块的所有内容全都导入到当前的命名空间也是可行的,只需使用如下声明:

这提供了一个简单的方法来导入一个模块中的所有项目。然而这种声明不该被过多地使用。

例如我们想一次性引入 math 模块中所有的东西,语句如下:

搜索路径

当你导入一个模块,Python 解析器对模块位置的搜索顺序是:

  • 1、当前目录
  • 2、如果不在当前目录,Python 则搜索在 shell 变量 PYTHONPATH 下的每个目录。
  • 3、如果都找不到,Python会察看默认路径。UNIX下,默认路径一般为/usr/local/lib/python/。

模块搜索路径存储在 system 模块的 sys.path 变量中。变量里包含当前目录,PYTHONPATH和由安装过程决定的默认目录。

Python中的包

包是一个分层次的文件目录结构,它定义了一个由模块及子包,和子包下的子包等组成的 Python 的应用环境。

简单来说,包就是文件夹,但该文件夹下必须存在 __init__.py 文件, 该文件的内容可以为空。__int__.py用于标识当前文件夹是一个包。

Python 面向对象

创建类

使用 class 语句来创建一个新类,class 之后为类的名称并以冒号结尾:

 

实例

 

  • empCount 变量是一个类变量,它的值将在这个类的所有实例之间共享。你可以在内部类或外部类使用 Employee.empCount 访问。
  • 第一种方法__init__()方法是一种特殊的方法,被称为类的构造函数或初始化方法,当创建了这个类的实例时就会调用该方法
  • self 代表类的实例,self 在定义类的方法时是必须有的,虽然在调用时不必传入相应的参数。

 

self代表类的实例,而非类

类的方法与普通的函数只有一个特别的区别——它们必须有一个额外的第一个参数名称, 按照惯例它的名称是 self。

从执行结果可以很明显的看出,self 代表的是类的实例,代表当前对象的地址,而 self.class 则指向类。

self 不是 python 关键字,我们把他换成 runoob 也是可以正常执行的:

创建实例对象

实例化类其他编程语言中一般用关键字 new,但是在 Python 中并没有这个关键字,类的实例化类似函数调用方式。

以下使用类的名称 Employee 来实例化,并通过 __init__ 方法接受参数。

访问属性

您可以使用点(.)来访问对象的属性。使用如下类的名称访问类变量:

python对象销毁(垃圾回收)

Python 使用了引用计数这一简单技术来跟踪和回收垃圾。

在 Python 内部记录着所有使用中的对象各有多少引用。

一个内部跟踪变量,称为一个引用计数器。

当对象被创建时, 就创建了一个引用计数, 当这个对象不再需要时, 也就是说, 这个对象的引用计数变为0 时, 它被垃圾回收。但是回收不是"立即"的, 由解释器在适当的时机,将垃圾对象占用的内存空间回收。

垃圾回收机制不仅针对引用计数为0的对象,同样也可以处理循环引用的情况。循环引用指的是,两个对象相互引用,但是没有其他变量引用他们。这种情况下,仅使用引用计数是不够的。Python 的垃圾收集器实际上是一个引用计数器和一个循环垃圾收集器。作为引用计数的补充, 垃圾收集器也会留心被分配的总量很大(及未通过引用计数销毁的)的对象。 在这种情况下, 解释器会暂停下来, 试图清理所有未引用的循环。

类的继承

继承语法 class 派生类名(基类名)://... 基类名写在括号里,基本类是在类定义的时候,在元组之中指明的

类属性与方法

类的私有属性

__private_attrs两个下划线开头,声明该属性为私有,不能在类的外部被使用或直接访问。在类内部的方法中使用时 self.__private_attrs

类的方法

在类的内部,使用 def 关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数 self,且为第一个参数

类的私有方法

__private_method两个下划线开头,声明该方法为私有方法,不能在类地外部调用。在类的内部调用 self.__private_methods

单下划线、双下划线、头尾双下划线说明:

  • __foo__: 定义的是特殊方法,一般是系统定义名字 ,类似 __init__() 之类的。
  • _foo: 以单下划线开头的表示的是 protected 类型的变量,即保护类型只能允许其本身与子类进行访问,不能用于 from module import *
  • __foo: 双下划线的表示的是私有类型(private)的变量, 只能是允许这个类本身进行访问了。

 

新式类和经典类的区别:

D 继承了 object 和不继承程序输出不一样,继承 object 会调用 C 类的 foo,否则会调用 A 的。

使用 super 进行父类构造调用那么必须使用 object 继承的新式类,否则报错。

 

 

Python正则表达式

re 模块使 Python 语言拥有全部的正则表达式功能

re.match函数

re.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none。

函数语法

函数参数说明:

参数 描述
pattern 匹配的正则表达式
string 要匹配的字符串。
flags 标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。

匹配成功re.match方法返回一个匹配的对象,否则返回None

 

我们可以使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。

匹配对象方法 描述
group(num=0) 匹配的整个表达式的字符串,group() 可以一次输入多个组号,在这种情况下它将返回一个包含那些组所对应值的元组。
groups() 返回一个包含所有小组字符串的元组,从 1 到 所含的小组号。

 

 

re.search方法

re.search 扫描整个字符串并返回第一个成功的匹配。

函数语法:

函数参数说明:

参数 描述
pattern 匹配的正则表达式
string 要匹配的字符串。
flags 标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。

匹配成功re.search方法返回一个匹配的对象,否则返回None

re.match与re.search的区别

re.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None;而re.search匹配整个字符串,直到找到一个匹配。

 

 

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: